
Real-time visualization of 3D terrains and subsurface
geological structures

Alejandro Gracianoa,∗, Antonio J. Ruedaa, Francisco R. Feitoa

aDepartment of Computer Science, University of Jaén, EPS Jaén, 23071, Spain

Abstract

Geological structures, both at the surface and subsurface levels, are typically
represented by means of voxel data. This model presents a major drawback:
its large storage requirements. In this paper, we address this problem and pro-
pose the use of a stack-based representation for geological surface-subsurface
structures. Although this representation has been mainly used for volumetric
terrain visualization in previous works, it has been used as an auxiliary data
structure. Therefore, our main contribution in this work is its use as a first-class
representation for both processing and visualization of surface and subsurface in-
formation. The proposed solution provides real-time visualization of volumetric
terrains and subsurface geological structures represented as stacks using a com-
pact data representation in the GPU. Different GPU memory implementations
of the stacks have been described, discussing the tradeoffs between performance
and storage efficiency. We also introduce a novel algorithm for the calculation
of the surface normal vectors using a hybrid object-image space strategy. More-
over, important features for geoscientific applications such as visualization of
boreholes or geological cross sections, and selective attenuation of strata have
also been implemented in a straightforward way.

Keywords: Terrain modeling, Volume rendering, GPU memory management,
Stack-based representation of terrains

1. Introduction

Terrain modeling and visualization are fundamental aspects of many geosci-
entific applications in fields like Geomorphology or Stratigraphy, but are also
important in non-scientific areas such as films or videogames. The representa-
tion of terrains is usually carried out by means of the modeling of its geometry
(surface and optionally subsurface) and an enhancement of the appearance by in-
cluding shading, different colors for different features (e.g., elevation, materials,

∗Corresponding author
Email addresses: graciano@ujaen.es (Alejandro Graciano ), ajrueda@ujaen.es

(Antonio J. Rueda), ffeito@ujaen.es (Francisco R. Feito)

Preprint submitted to Advances in Engineering Software October 11, 2017



etc.), or aerial/satellite imagery. Traditionally, digital elevation models (DEM)
have been the preferred method for terrain surface modeling. But terrain raster
representation using this 2.5D model is limited to one single elevation value for
each cell. As a result, it is unsuitable for modeling complex surface/subsurface
features like natural overhangs or caves. Moreover, in recent years the improve-
ment in data acquisition and generation methods [1] [2] has provided accurate
subsurface data, such as statigraphic information or location of groundwater,
cavities or fractures, which require more general models than a simple DEM.
This kind of data is usually represented by means of voxel models [3]. Voxel
models consist of a regular 3D space partition where each cubic element (called
voxel, from volumetric element) represents a single value within the grid. Voxel
models are ubiquitous in many fields such as medical imaging [4], scientific vi-
sualization and simulation [5], engineering applications [6] or gaming. It has
also been widely used in many geoscientific works [7] and adopted by 3D GIS
software such as GRASS [8] and Mapinfo Engage [9]. However, this volumetric
representation raises the problem of a large memory consumption, which can
be a relevant factor during the processing and visualization of high resolution
models.

A more efficient representation is to extend DEMs to store in each cell a
sequence of vertical intervals of the same material or attribute instead of a
single elevation value. This is a straightforward way to compact stacks of voxels
with a common attribute and the same X-Y coordinate. This is not a novel idea;
indeed Benes and Forsbach already introduced the Stack-Based Representation
of Terrains (SBRT) in the context of modeling terrain erosion [10]. A main
strength of this representation is that it keeps the simplicity of DEMs, making
it possible to implement raster operations in an easy way. Having a simple
representation that serves both for implementing raster operations on the terrain
and for efficient rendering is important for many geoscientific applications.

Based on this representation, we present a real-time framework for visual-
ization of terrain and geological structures by adapting the volume rendering
algorithm based on raycasting. Our visualization method allows performing
cross sections on the terrain, attenuation of stratigraphic layers or selective vi-
sualization of boreholes, among other operations. In order to achieve interactive
frame rates we have implemented the volume rendering in the GPU, encoding
the stacks of materials in a very compact way as a set of textures and buffers
in GPU memory. This avoids expensive data transfers between GPU and CPU
that can be a bottleneck in a visualization system.

We want to highlight that the SBRT is not only a convenient representation
for real-time visualization of surface and subsurface of the Earth. We are also
working on the definition of different geomodel conversion methods (to and from
voxel models, DEMs or MultiDEMs), spatial operators, resampling methods and
advanced terrain analysis. Most of these operations can be defined by adapting
the Map Algebra of Tomlin [11], widely used in geospatial applications, to the
SBRT. For instance, resampling can be implemented as a particular case of the
local operations defined in this algebra. But this is still a work in progress. The
design and implementation of these operations will be discussed in subsequent

2



papers.
Through this paper we distinguish between volumetric/3D terrain and ge-

ological/subsurface structures. The first term concerns the boundaries of the
terrain, i.e., the surface and elements such as caves or overhangs, whilst the
second term involves the different geological features of the subsurface such as
materials or aquifers.

Thus, the novel contributions of this paper are:

• A real-time rendering method for the visualization of volumetric terrains
and geological structures, using a stack-based representation of terrains as
main data structure.

• A comparison among different implementations in GPU of the represen-
tation proposed.

• The implementation of useful visual features for geoscientific applications
in order to validate the use of the representation.

• An efficient and simple method to calculate normal surface vectors in
image space.

The remainder of this paper is organized as follows. Section 2 provides a
review of the existing literature. In Section 3, the stack-based representation for
geomodels is outlined. Section 4 is focused on the explanation of the pipeline
followed in our rendering algorithm, as well as it depicts several features of our
framework. An analysis of a set of memory layouts proposed is discussed in
Section 5. Finally, we conclude our work in Section 6.

2. Related work

Traditionally, spatial data in GIS are represented by vector and raster data
types. 3D GIS commonly takes boundary representation models (B-rep) besides
3D lines and points, and voxel models as the natural 3D extension of 2D vector
and raster data types respectively [12].

B-rep models have been represented by several structures. Irregular Net-
works are based on the use of the simplest geometric structures for each di-
mension, called simplexes. Therefore, Triangular Irregular Networks (TINs) are
made up of 2D simplexes (i.e. triangles) and Tetrahedronised Irregular Net-
works (TENs) consist of a set of 3D simplexes (i.e. tetrahedrons). TINs have
been used for the representation of geological structures in the form of surfaces.
For instance, Lemon and Jones [13] used triangular surfaces in order to delimit
the horizons between the strata identified from boreholes data. TINs have also
been used for modeling free-form stratigraphic layers [14]

Regarding TEN representation, it was used by Caumon et al. for integrat-
ing geological formation data, provided by remote sensing images (stratigraphic
horizons), and digital elevation models [15]. Another work presented a method-
ology for mesh generation in subsurface simulation modeling using finite ele-
ments [16]. An important drawback of these data structures is that checking

3



and ensuring their topology consistency is a non-trivial task [17]. Data struc-
tures based on hierarchical decomposition such as generalized maps [18], or
focusing on the representation of boreholes such as generalized tri-prism [19]
have been proposed to avoid this problem.

In reference to terrain representation using voxels, Jones et al., estimated the
curvature in rock weathering using voxel grids [20], whereas in [21] a voxel model
was constructed from geological data acquired from using Airbone Electromag-
netics (AEM). More recently, a tool for generating voxel models obtained from
parametrized data provided by a series of geological surfaces has been presented
[22].

Usually, the visualization of these models has been done by converting them
to triangle meshes as a first step [23] [24] [25]. This approach has a couple of
significant drawbacks in terrain visualization applications: (1) the large amount
of geometry that has to be processed by the GPU and (2) the difficulty of
rendering internal elements. For these reasons, some researchers have focused
on the visualization through Direct Volume Rendering (DVR) techniques [26].
In this field, we can find works performing raycasting [27] [28], representing
volumes as multiscale vectors [29], by diffusion surfaces [30] or from implicit
representations [31]. There are also works focusing on the surface of the terrain,
without rendering volumetric features [32] [33] [34].

For a more comprehensive review of volumetric terrain and subsurface mod-
eling state of art, we refer to the survey of Natali et al. [35].

So far the stack-based terrain representation and its variations have been
used in a few scientific works, mostly focusing on the visualization at the ground
level. Benes and Forsbach, precursors of this model, used it to simulate thermal
erosion in a terrain. In this work, they visualized the surface of the terrain by
generating a height map [10]. Peytavie et al. [36] got a more realistic visualiza-
tion by proposing a hybrid model in which a stack-based representation (referred
to as material layer stacks representation) serves as support for generating an
implicit surface for rendering. Also, some sculpting and erosion terrain tools
were added. This work was extended by Loffler et al. [37] by creating a pipeline
for the acceleration of this surface generation. Their system achieves real-time
frame rates in the rendering of high resolution models. Natali et al. [28] were
the first to take advantage of this structure for modeling subsurface geological
structures. In their work, they present a system for sketching and visualiza-
tion of geomodels to help geologists to teach geological concepts. Their system
works as follows: an expert sketches a series of material layers and geological
elements (e.g. rivers, lakes, etc.), which are converted into multiple height maps
for rendering. Unfortunately, the use of height maps only allows elements that
can be represented in 2.5D, excluding features like overhangs, caves, aquifers or
petroleum reservoirs.

In the previous approaches, the stack-based model plays a secondary role,
to visualize complex terrain structures or erosion processes at the ground level
or as an intermediate representation generated from a logical model. In this
paper we propose to use the stack-based model as a primary representation
for geological structures both at the surface and subsurface levels, describing

4



Grid resolution

Height1

Height2

Height3

Height4

Height5

Air

Rock

Clay

Water

Sandstone

(a) (b) (c)

Figure 1: Stack-based representation scheme. Voxels belonging to a specific X-Y position (a),
the stack resulting (b) and the set of materials (c)

a direct real time rendering algorithm in GPU with a good visual quality for
scientific applications.

3. Stack-based terrain representation

This terrain representation can be considered as a generalization of common
height maps. As described above, whereas height maps contain a single value
for each X-Y coordinate position, stack-based representation stores a “stack” of
intervals. Each of these intervals is formed by a start height and the attribute
within it, similar to a run-length encoding scheme (Figure 1).

The stack-based terrain representation is a natural representation for data
generated by borehole logging. A borehole provides a top to bottom sequence
of materials at a given X-Y position (Figure 2). A common way to obtain
a geomodel of the subsurface is by means of an interpolation/extrapolation
procedure of the boreholes samples, obtaining a layer-cake model as a result [38].
This generated model fits perfectly with the stack-based representation since
each cell of the terrain can store a single borehole record as a stack, including
both materials and height of the geological formations (e.g. water, petroleum,
clay, rock, etc.) and geological properties (e.g. density, permeability, resistivity,
etc.).

Although the stack-based representation is appropriate for 3D terrain models
and geological structures, it is not efficient for other kinds of volumetric data,
such as medical datasets. The main problem is that such datasets may not be
formed by a set of horizontal layers, thus presenting quite complex and thin
structures like vessels. Therefore, the proposed representation could use even
more memory than a voxel model. Moreover, volumetric medical datasets are
usually acquired from CT and MRI scanners as a stack of images in which every

5



T
a
b

le
1
:

M
em

o
ry

co
n

su
m

p
ti

o
n

co
m

p
a
ri

so
n

D
a
ta

se
t

N
u
m
b
e
r
o
f
v
o
x
e
ls

M
e
m
o
ry

u
sa

g
e
(M

B
)

C
o
m
p
re

ss
io
n

(%
)

V
o
x
e
l
m
o
d
e
l

O
c
tr
e
e
(6

le
v
e
ls
)

S
B
R
T

S
B
R
T

-
V
o
x
e
l
m
o
d
e
l

S
B
R
T

-
O
c
-

tr
e
e

D
at

as
et

A
20

0
×

25
0
×

32
0

61
.0

3
9
.8

7
2
.5

5
9
5
.8

7
4
.1

D
at

as
et

B
40

0
×

50
0
×

40
0

30
5.

17
5
0
.0

6
1
0
.1

0
9
6
.7

7
9
.8

D
at

as
et

C
80

0
×

10
00
×

80
0

24
41

.4
1

5
7
0
.9

0
5
2
.0

2
9
7
.9

9
0
.9

6



Figure 2: A real example of borehole log extracted from a geotechnical survey of the subsurface
of the University of Jaén (Spain)

pixel stores an intensity value coded by a 16 or 32-bit floating point value. Thus,
in order to compact then in a stack-based structure, a discretization procedure
must be performed first, by labeling each intensity range with a single value. Of
course this introduces an error, and even if done carefully may discard intensity
values that are important for the analysis of the images.

Despite the fact that certain properties or blended materials could also be
considered continuous in natural geological formations, this representation must
be discrete for compression to be effective and to be able to carry out analysis
operations in an efficient way. Nevertheless, an interpolation procedure can be
performed for visualization purposes (Section 4).

A test to measure the memory usage of different representations, namely
voxel model, octree and stack-based representation is summarized in Table 1.
The datasets were obtained from the DINOloket database, which provides sub-
surface data from several spots in Netherlands [39]. The results show a much
smaller memory usage of the SBRT compared to the rest. Our method requires
95% less space than a voxel representation. Even the memory usage of a SBRT
is much lower than that of an octree, 74% less for Dataset A, 79% less for
Dataset B and 90% less for Dataset C.

7



As already mentioned in Section 2, several geoscientific visualization research
works carry out a visualization based on triangle meshes. The most usual tech-
nique for generating a triangle mesh from a volumetric dataset is Marching
Cubes (MC) [40]. This algorithm and all its variants generate a set of triangles
which represents an isosurface from a given isovalue. Realtime visualization of
cross-sections or a specific stratum/material would require generating multiple
meshes by applying MC on each isosurface as preprocessing. This may result in
redundant geometry and in a model that would take up much more space than
a SBRT. For instance, Figure 12, later in this paper, illustrates how complex a
surface/subsurface model can be, and the amount of triangles which would be
required to render each feature.

4. Rendering method

4.1. GPU-based raycasting

The approach described in this section is based on the well-known GPU
raycasting algorithm. The key idea of the algorithm is to cast rays from the
virtual camera through every pixel in the framebuffer, combining the color values
sampled along the ray in a fragment shader [26].

4.1.1. Geometry setup

Rendering starts by sending a simple geometry to the GPU which serves
as start and exit points of the rays. Often, as in our case, the geometry sent
to the GPU is the bounding box of the volumetric dataset. This approach can
lead to the problem of empty space skipping : A significant number of rays may
pass across empty space (i.e. air, transparent material, etc.), penalizing the
performance without any effective contribution to the final result. Because of
this, several alternative approaches replace the bounding box with a tighter
bounding geometry [41] [42]. We decided to use the bounding box in order
to keep the simplicity of the model, and also because it fits the shape of a
volumetric terrain fairly closely. Also, later in this section we propose a partial
solution that minimizes the effects of the empty space.

4.1.2. Data access

In this step the ray samples the model, which results in a data texture/buffer
access. In our method, first the X-Y position is obtained by projecting the
ray to the terrain grid. Therefore, a single stack is obtained from this X-Y
position. Then, the final value is sampled by iterating on the stack attributes.
Depending on the sampling ray position, the stack is iterated starting at the
top, if the ray is above the bounding box equator, or at the bottom, if it is
below. This trivial optimization improves the performance by 15% on average.
DVR methods usually store volume data in a 3D texture (or in a 2D array
texture). However, there are multiple possible strategies to encode a stack-
based representation of a model in GPU memory, as we discuss in Section 4.2.

8



Once the value is sampled we need to obtain a mapping between it and a
color. DVR methods usually use a Transfer Function (TF) for this purpose. The
TF is a scalar function which assigns optical properties (such as color or opacity)
to each data value [4]. We simplify this function by means of a color lookup
table since we encode the data as discrete values (i.e., materials). The color
palette of the TF has been chosen in order to provide a good contrast among
the materials and provide a visual clue to the kind of material (e.g., sand in
yellow or water in blue tones). An illumination model can also contribute to
the final color in order to simulate the light interaction and increase realism.
Our method uses a deferred strategy: In a first pass only the value of the TF is
retrieved. Then, in a second pass a normal vector is calculated from the depth
buffer, and the final pixel color is calculated (Figure 3). We use a Lambertian
diffuse model for the illumination according to Equation 1. Components ia and
id control the intensity of ambient and diffuse lighting respectively, kd is the
diffuse Lambertian reflectance, ~L is a direction vector from the object to the
light source and ~N is the normal vector to the surface in a point p.

Ip = ia + kd(~L. ~N)id (1)

Normal vectors are usually computed by simulating a density gradient, but
this solution requires volume data representing intensity values, as for instance in
medical imaging. Much of the work of the literature focused on the calculation of
surface normals for discrete volume data take an image space approach [43] [44].
Surface normals are typically obtained by calculating the horizontal and vertical
gradients for each pixel locally from the depth buffer data. The resulting shaded
models using this approach might not present a smooth surface, since a voxel
may cover many pixels if the model is near to the virtual camera. In contrast,
an object space approach provides a better approximation of the surface since
it takes into account the actual geometry of the model. For this purpose, a
discrete voxel model can be represented as a binary voxel model simply by
labeling each voxel as occupied or empty space. A straightforward method to
obtain the normal is to convolve a k×k×k kernel at the current position where
the ray is located (V0,0). A voxel Vi,j of the kernel contains the unit vector

direction from V0,0 to Vi,j . The final normal vector ~N is calculated by summing
the vectors associated to each voxel whose center are in an empty space (see
Figure 4). The time consumed for this method as well as the smoothness of the
surface is strongly determined by the kernel size chosen. The larger the kernel
size, the smoother the surface, but more computation time is required due to
the increase in the number of data accesses.

The approach we propose is hybrid: we calculate the normal vector with the
convolution method described above but in image space rather than in object
space. Instead of calculating the normal vector in the raycasting pass, we store
in a framebuffer object the color retrieved by the transfer functionwe store the
color retrieved by the transfer function in a framebuffer object (without any
illumination applied). In the next pass, the resulting world position (p) of
every ray casted through each pixel (r) is unprojected from the depth buffer.

9



Figure 3: Deferred shading strategy used. The dotted lines indicate an usage relationship

This 3D position is the central point of an axis-oriented grid which represents a
convolution kernel. Then, we calculate the depth value (d′) for the center of each
cell of the grid. Following this, we project the center of the cells (p′) to image
space and retrieve the actual depth value from the pixels obtained (d). With
these values, we can assume that if d′ > d the cell that contains p′ is labeled
as occupied or as empty space otherwise. Once we calculate the occupation
value for all the cells the convolution can be performed. The time consumed

10



Volumetric terrain

Empty space

~N

V0,0

(a) (b) (c)

Figure 4: Calculation of a normal vector in an object space. ~N (c) is the resulting from the
sum of the vectors contained in empty space voxels (b). Also, a legend is shown (a)

di

d′i

r
ri

eye

depth buffer

Figure 5: Calculation of a normal vector in image space. The ray ri provides two depth values,
an actual (d) and an estimated (d′) with which the binary value of the kernel (occupied or
empty space) is calculated

by this approach is less dependent on the size of the grid than in a strategy
based on the object geometry. Table 2 and Figure 6 show a comparison of the
computational cost and visual quality achieved using different kernel sizes. For
a kernel size 5 <= k <= 9, the drop in performance is affordable, therefore,
in our framework, the kernel size is an adaptive parameter depending on the
SBRT dimensions within this range.

Figure 5 depicts our hybrid strategy. Note that this method only can com-
pute a reduced number of different normal vectors in comparison with gradient

11



Table 2: Relative drop in performance when using different kernel sizes over rendering without
lighting

Kernel size
Drop in performance

Dataset A Dataset B Dataset C
3× 3× 3 3% 4% 3%
5× 5× 5 18% 21% 16%
7× 7× 7 43% 48% 41%
9× 9× 9 62% 66% 59%

11× 11× 11 75% 78% 72%

3× 3× 3 5× 5× 5 7× 7× 7

9× 9× 9 11× 11× 11

Figure 6: Visual results when applying different kernel size to a SBRT with a grid dimension
of 800 × 1000. Each subfigure shows a region with a dimension of 200 × 300

estimation techniques, but in practice they are enough for a good visual quality
in scientific visualization.

Several authors suggest that the normal vectors can be calculated in a pre-
vious step and passed in a buffer to the raycasting pipeline [45] [46]. However,
this out-of-core approach requires significant extra memory in comparison with
the techniques explained previously. This out-of-core approach would require an
extension of the original SBRT including solely the normal vectors of the visible
intervals. Assuming each component is encoded with a single precision floating-
point number (32 bits), Dataset A (Table 1) would need an extra amount of
memory of approximately 16 MB; Dataset B would need 64 MB, while Dataset
C would need more than 256 MB. This memory footprint remains very large in
comparison with the memory usage required by a SBRT. Applying a method
for normal vector compression [47] would only save a 16% of its memory re-
quirements on average. Moreover, it should be noted that this precomputation
procedure must be carried out each time a different visual operation is requested,

12



as explained in Section 3, which would have a significant impact on the overall
system performance.

In a similar way, the color buffer resulting from the first rendering pass is
subjected to a filtering process. The convolution kernel is a Gaussian smoothing
operator which is performed in our hybrid scheme.

4.1.3. Compositing

The color computed at each iteration of the loop has to be combined with
those calculated in previous iterations. Essentially, the composition (also called
alpha blending) in DVR can be accomplished in a front-to-back or in a back-to-
front order. We decided to use the former since it is more suitable to optimiza-
tions such as early ray termination as is outlined below.

4.1.4. Advance ray position

The reconstruction of the volumetric data as well as any other type of
signal requires to set a sample rate carefully. A subsampled reconstruction will
result in artifacts such as Moiré patterns whilst supersampling may considerably
affect the performance. In order to avoid these two drawbacks, we choose an
adaptive sampling strategy. This strategy advances the ray with a varying step
size depending on the traverse mode: empty space skipping mode (coarse step)
or sampling mode (fine step). At first, in empty space skipping mode, the
step size is equal to the resolution of the terrain cell. This ensures a single
access per stack. Once a collision with a non-empty value is detected, the ray
moves backwards one step and the traverse mode is changed to sampling mode.
From here, the step size is reduced according to the Nyquist-Shannon sampling
theorem: the sampling rate must be at least twice as high as the maximum
frequency of the signal. In a DVR context, the maximum frequency (fm) is a
3D vector in which each component corresponds to the minimum resolution in
each dimension: the resolution of the grid cell for X and Y components and the
minimum relative height from among all the stacks for Z component. Therefore,
in sampling mode the step frequency (fs) will be fs >= 2fm.

4.1.5. Ray termination

The criterion used for an early ray termination is based on the composed
opacity. If the opacity is above some threshold (1− ε), we can assume that new
contributions to the alpha blending will be irrelevant, and therefore the traverse
is stopped.

4.2. Texture management

An issue that produces a major impact on the performance of any rendering
method is the texture access. Fetching a texel is one of the most time-consuming
operations on the GPU, but fortunately texture access exhibit spatial and tem-
poral coherence that can be exploited to improve performance. Modern GPU
architectures use caches where recent texture reads are stored following an LRU
strategy [48]. A further refinement is the use of texture swizzling strategies [49].

13



To improve cache coherency, texture swizzling uses space-filling curves such as
Peanno-Hilbert or Morton sequence for data organization in the texture. Also,
approaches based on the view direction in raycasting have been proposed [50].
In our case, we focus on cache-friendly strategies at the stack representation
level.

In the following, we show different memory layouts for the storage of a stack-
based representation on GPU memory. The procedure to sample a particular
attribute by the raycaster is divided into two steps: the stack identification
and its iteration. These two steps are common to every proposed layout; the
only differences are the number of textures (or buffers) used and how they are
traversed.

In a first approach (namely 1-Textures, Figure 7.b) we maintain a couple of
2D textures: an indices texture and an intervals texture. The aim of the former
is to serve as a spatial index for the stacks descriptions stored in the intervals
texture. Indices texture has the same dimensions than the support grid of the
stack-based representation (gridwidth × gridheight); hence the related stack is
obtained by projecting the X-Z components of the ray position on this grid.
This projection provides a 2D index which is used as an index for the indices
texture. For each texel of this texture we use the components R and G from
the originals RGBA. In R component we encode a pointer (i.e., a 1D index) to
the intervals texture while the number of intervals in this stack is encoded in G
component. The intervals texture stores each stack in a row-major order. Here
we also use two components to encode an interval: the R-G components store
its attribute and the accumulated height respectively. The pointer (i0) and the
number (n) of intervals stored in the indices texture marks the beginning and
the end of the stack in the intervals texture, so that the required interval is
obtained by iteration between the i0 and in−1 positions.

In the second approach (2-R-Supertexels, Figure 7.c), a single 2D texture is
used. In this texture we encode two levels, one for indices and one for intervals.
We construct the texture by first obtaining the maximum number of intervals
among all the stacks, m. Then, in order to store each stack, we create regions
of

⌈√
m
⌉
x
⌈√

m
⌉

dimensions, where
⌈
x
⌉

is the ceiling operator. These regions
act as ”supertexels” to provide a pseudoindices scheme. Therefore, the actual
dimensions of the texture are calculated by:

texturewidth = gridwidth ∗
⌈√

m
⌉

textureheight = gridheight ∗
⌈√

m
⌉ (2)

This strategy allows a straightforward way to get the related stack since all
the regions are squares. Similarly to the previous approach, the ray position
must be projected in the support grid, but, in contrast, an offset has to be
added to the cell obtained. Once the region has been identified, we only have to
iterate through it to locate the interval. Also, this texture encodes the attribute
and the height of an interval in their R-G components. Alternatively, the stacks
can be saved in non-squared regions by finding the rectangle with the minimum

14



Approach 1

Indices texture

Intervals texture

Approach 2 Approach 3

Approach 4

width− 1, 00, 0

0, height− 1 width− 1, height− 1

Attribute

Height

Attribute

Height

Attribute
Height

Attribute

Height

Stack

Stack
(3 × 2 size)

Stack

Stack

SSBO binding points

n

1

0

Indices SSBO

Intervals SSBO

Stack

Approach 5

(a) (b)

(c) (d)

(e) (f)

Figure 7: Memory storage patterns (b, c, d, e, f) for a stack-based geomodel (a)

perimeter. This can be formulated as a simple optimization problem:

argmin
width,height

width+ height

subject to width ∗ height >= m

width > 0

height > 0

(3)

This is the preferred layout in this approach when m is not prime. Otherwise
the former layout (square regions) should be chosen.

Another possible approach is that proposed by Natali et al. [28]. They used
a 3D texture of width×height×m dimensions in which the intervals are stored
along the z axis (approach 4-3D-Texture, Figure 7.e). In contrast, we use a 2D
texture of (width ∗m) × height dimensions (approach 3-L-Supertexels, Figure
7.d). The stack identification is accomplished in a similar way as explained
above, but with the difference that we only have to add an offset to the x index.
Then, the stack iteration will be done in a linear manner.

Despite in DVR the prevailing memory schemes use textures to store vol-

15



umetric data; current graphics visualization APIs provide other ways to send
data to the GPU such as Uniform Buffer Objects (UBO). Recently OpenGL
in its 4.3 version has included a new method for storing large amount of data
in the GPU, the Shader Storage Buffer Objects (SSBO). Actually, a SSBO is
an enhanced and more flexible version of UBO: OpenGL implementations must
support UBOs of at least 16KB whilst the guaranteed minimum for a SSBO
is 128 MB. Furthermore, the specification of SSBO allows the definition of a
non-fixed size array. A SBRT can be represented in a straightforward way as an
array of intervals, being this scheme well suited for its storage in a SSBO due
to its internal memory layout: In conjunction with SSBOs, OpenGL introduced
the std430 layout which packs scalar arrays more efficiently than the old std140
[Sellers16]. An approach based on SSBOs is also proposed (approach 5-SSBO).
Similarly to approach 1-Textures, we populate two SSBOs, one for indices and
another for intervals (Figure 7.f).

In order to clarify these approaches, an illustrative example is explained.
Given a SBRT with a grid of width × height cells and a maximum stack size
of 5 intervals (Figure 7.a), the memory storage patterns are described next: in
approach 1-Textures, the indices texture has the same dimension that the grid
of the stack-based representation (width × height), being the interval data se-
quentially added through the interval texture. To set the size of the interval
texture, we first need to know the total number of intervals of the stack-based
terrain. Then, with Equation 3 we can determine the texture dimension as-
signing to m the total number of intervals. If this value is prime the Equation
2 can be used. Also, this value can be increased in order to use Equation 3.
Approach 1-Textures can waste some memory since the last cells of last row
usually are not used in this latter case. For approach 2-R-Supertexels it is nec-
essary to set the size of the supertexels. The largest stack determines this value
(5 intervals, in the example). The texture contains supertexels of 3 × 2 texels.
The approaches 3-L-Supertexels and 4-3D-Texture are similar. Finally, for the
approach 5-SSBO two arrays containing the indices and the intervals are stored
in two separate SSBOs. This example is shown in Figure 7.

4.3. Visual operations

In this subsection we describe a set of operations common in geoscientific
applications and their implementation in our system. These operations, such
as the selective visualization of boreholes or the hiding of strata of materials,
provides geoscientists with visual tools to take decisions at a glance.

4.3.1. Strata visualization

With the aim of showing hidden elements of the subsurface, each stratum
can be attenuated or directly excluded from visualization. This is achieved by
simply modifying the opacity of the material color in the color lookup table. By
using raycasting for rendering, it is not necessary to construct a new geometry
when hiding certain layer. Figure 8 shows some examples of layers attenuation.

16



Figure 8: Example of layer attenuation (b) of an original dataset (a)

4.3.2. Cross section visualization

Another way to visualize internal structures is via geological cross sections.
These are 2-dimensional slices of the subsurface, usually vertical, used to study
the the distribution of rock types, including their ages, relationships and struc-
tural features. Our system not only allows to perform sections by vertical cutting
planes, but also by any freely-oriented plane in 3D space. In this case, the ren-
dering algorithm will start at the intersection of the casted ray with the cutting
plane. Figure 9 illustrates this feature.

4.3.3. Borehole log visualization

Borehole records are obtained by drilling the rock core and they contain
relevant information on lithology, stratum thickness or physical properties of

17



Figure 9: Cross-section (b) and original model (a)

the geological formations (Figure 2). The samples brought to the surface or
the measurements made by the instruments lowered into the hole are mostly

18



Figure 10: Example of borehole visualization. They are shown as cylinder of two materials
(blue and yellow color)

the input data for the construction of subsurface models. We can simply label
a stack as corresponding to a borehole by using a Boolean flag in the indices
texture. When borehole log visualization is selected, only the stacks with this
flag set are shown. Figure 10 shows an example of borehole log visualization.

4.3.4. Applying textures to terrain

We also provide an operation for adding an image texture to the surface of
the terrain such as orthophotos or topographic maps. In a direct way, the pixel
color can be obtained from the image and optionally combined with the material
color, provided that the ray intersects with the terrain surface. In Figure 11 an
example of this feature is shown.

19



Figure 11: Example of orthophoto application. Original model (a) and model with an
orthophoto applied on its surface (b)

5. Performance analysis

5.1. Comparison of memory layouts

To test the approaches described in Section 4.2), we performed a set of
experiments. We measure and compare the millions of rays per second (MRPS)

20



Figure 12: An original model (e) and different examples of visual operations applied: hiding
of many layers (a), application of an orthophoto on the surface (b), borehole visualization
combined with layer hiding (c) and visualization of cross-section (d)

by rendering the different layouts and their memory usage. We therefore tested
four datasets with different grid dimension and stack sizes (previously used in
Section 3); 200 × 250 with a number of 10 intervals maximum per stack, which
corresponds to a model of 200 × 250 × 320 voxels (Dataset A); 400 × 500
with 15 intervals, which corresponds to a model of 400 × 500 × 400 voxels

21



(Dataset B) and 800 × 1000 with 16 intervals, which corresponds to a model of
800 × 1000 × 800 (Dataset C). Finally, Dataset D is a modification of Dataset
C by deleting several layers and visualizing some stacks, see Figure 13. These
datasets were also obtained from the DINOloket database. To measure the
impact of raycasting direction we rendered the dataset from different virtual
camera positions.

Figure 13: Overview of the datasets used in the experiments. Dataset A is shown in the
left-upper corner (a), Dataset B is in the right-upper corner (b), Dataset C is in the left-lower
corner (c) and Dataset D is in the right-lower corner (d)

The hardware setup for the experiments consisted of a PC equipped with
an Intel Core i7-4790 CPU running at 3.60 GHz with 16 GB of RAM and an
NVIDIA GeForce GTX 970 graphic card. The framework proposed has been
implemented in C++ and OpenGL 4.5 as 3D graphic library.

Regarding the implementation of the textures and buffers involved in the
experiments in Figure 7, we declared a 2D texture of indices with GL RG32UI

internal format and a 2D texture of intervals with GL RG16F internal format for
approach 1-Textures. The approaches 2-R-Supertexels and 3-L-Supertexels used
a single 2D texture with GL RG16F as the internal format. Also, we compared

22



 0

 20

 40

 60

 80

 100

 120

 140

Dataset A Dataset B Dataset C Dataset D

M
ill

io
ns

 o
f r

ay
s 

pe
r 

se
co

nd
1-Textures

2-R-Supertexels
3-L-Supertexels
4-3D-Texture

5-SSBO

Figure 14: Minimum MRPS reached

the layouts proposed with the 3D texture strategy presented in [28] (approach 4-
3D-Texture). Likewise, the internal format of the 3D texture was GL RG16F. For
approach 5-SSBO, the indices SSBO is filled by an array of structures formed
by two 32-bits unsigned integers, whilst the Intervals SSBO by two 16-bits
floating-point numbers. The rendering method has been performed on a 1056
× 884 viewport.

Figure 14 reports the minimum value of MRPS reached in the experiments
for each dataset and approach (worst case). This case usually occurs when the
ray has to traverse more empty space. On the other hand, Figure 15 shows the
maximum value of MRPS reached (best case).

The plot referred to the worst case shows a similar pattern for each dataset.
Approaches 1-Textures and 5-SSBO perform better than others. Due to the fact
these approaches are linear, the prefetching and the cache work better at stack
level. Furthermore, the layout provided by OpenGL for the SSBO seems better
than approach 1-Textures. In Figure 15, results are less conclusive, obtaining
in all datasets more than 200 MRPS: more than 200 frames per seconds for the
chosen viewport dimensions.

23



 0

 200

 400

 600

 800

 1000

 1200

 1400

Dataset A Dataset B Dataset C Dataset D

M
ill

io
ns

 o
f r

ay
s 

pe
r 

se
co

nd
1-Textures

2-R-Supertexels
3-L-Supertexels
4-3D-Texture

5-SSBO

Figure 15: Maximum MRPS reached

The layout of approach 3-L-Supertexels presents some restrictions. The
approach cannot be used for very large models. The graphics cards support
textures up to a maximum size. For the card used in our experiments, this
maximum size is 16384 × 16384 for 2D textures. Therefore, in order to encode
a dataset with a dimension of 1024 × 1024 and more than 16 maximum intervals
per stack, this layout needs at least a 17408 × 1024 2D texture, exceeding the
GPU limits.

The memory requirements of each layout as well as the wasted memory have
also been summarized in Table 3, being approaches 1-Textures and 5-SSBO
the most efficient packing the data. In these approaches, the intervals storage
(texture or SSBO) does not need a fixed interval size in order to identify a
stack due to the indices storage. However, as can be noted, approach 1-Textures
requires some extra memory for Dataset A that can be neglected. This is because
the total number of intervals, 309433 in this case, is a prime value. In order
to decompose the set of intervals in a rectangular texture, we summed one to
this value to be able to use Equation 3 (obtaining a 479 × 646 texture). The
outcomes for the remaining approaches show a noticeable wasting of memory
storage.

In general, the approach 5-SSBO can be considered the best one in terms of
performance since it reached the higher MRPS values on average. Moreover, the
approaches 5-SSBO and 1-Textures provide the best results in memory usage
and in the ratio consumed/wasted. SSBOs can use all the available GPU mem-
ory, which is considerably higher than the maximum size allowed for textures
(as stated above, 16384 × 16384 dimensions). Therefore, the approach 5-SSBO
is able to manage datasets larger than those who can be holded in 1-Textures,

24



T
a
b

le
3
:

S
to

ra
g
e

re
q
u

ir
em

en
ts

o
f

m
em

o
ry

la
y
o
u

ts

D
a
ta

se
t
A

D
a
ta

se
t
B

D
a
ta

se
t
C

W
a
st
e
d

m
e
m
o
ry

(M
B
)

C
o
n
su

m
e
d

m
e
m
o
ry

(M
B
)

P
e
rc
e
n
ta

g
e

o
f
w
a
st
in
g

(%
)

W
a
st
e
d

m
e
m
o
ry

(M
B
)

C
o
n
su

m
e
d

m
e
m
o
ry

(M
B
)

P
e
rc
e
n
ta

g
e

o
f
w
a
st
in
g

(%
)

W
a
st
e
d

m
e
m
o
ry

(M
B
)

C
o
n
su

m
e
d

m
e
m
o
ry

(M
B
)

P
e
rc
e
n
ta

g
e

o
f
w
a
st
in
g

(%
)

1-
T

ex
tu

re
s

3
.8

1
×

10
−
6

1.
56

2.
4
×

1
0
−
4

0
.0

0
6
.2

0
0
.0

0
.0

0
2
9
.0

6
0
.0

2-
R

-S
u

p
er

te
x
el

s
0.

73
1.

91
3
8
.1

6
.7

7
1
1
.4

4
5
9.

2
2
5
.8

7
4
8
.8

3
5
3
.0

3-
L

-S
u

p
er

te
x
el

s
0.

73
1.

91
3
8
.1

6
.7

7
1
1
.4

4
5
9.

2
2
5
.8

7
4
8
.8

3
5
3
.0

4-
3D

-T
ex

tu
re

0.
73

1.
91

3
8
.1

6
.7

7
1
1
.4

4
5
9.

2
2
5
.8

7
4
8
.8

3
5
3
.0

5-
S

S
B

O
0.

00
1.

56
0
.0

0
.0

0
6
.2

0
0
.0

0
.0

0
2
9
.0

6
0
.0

25



without the use of an out-of-core strategy. However, SSBOs are only available
in modern GPUs supporting OpenGL 4.3 or higher. Consequently, approach
1-Texture provides a more general solution for older hardware.

5.2. Comparison with hierarchical data structures

Hierarchical space partition schemes such as quadtrees, octrees or kd-trees
are widely used to represent and visualize environmental data using voxel models
[51] or polyhedral meshes [52] [53]. In general, most of the papers focused on
voxel models deal with binary datasets or use an isosurface in order to represent
only their boundaries [54] [46] [55]. Nevertheless, there are some works that
consider internal materials with which a comparison can be made, for instance,
the work presented by Crassin et al. [56]. In Section 3 we already showed how
SBRTs have far lower memory requirements than octrees (between 69% and
86% less), but this data structure has several additional limitations when used
for representing volumetric terrains, as we explain next.

A first disadvantage in relation to a SBRT is that using a hierarchical struc-
ture is not the ideal representation for some simulation or analysis applications,
as in the case of physical-based erosion simulations [57] [36]. This could involve
too many ascents and descents in the octree hierarchy [58] and possibly lead
to its reconstruction after the simulation process. On the contrary, a SBRT
can be used both for rendering and analysis purposes in a direct and natural
manner. Another issue to consider is that usually the volumetric dataset must
have power-of-two dimensions. For instance, Dataset A originally has a 200 ×
250 × 320 dimension; therefore a dataset with 512 × 512 × 512 voxels must be
built. While it is true that this does not significantly affect performance, this
does increase memory requirements and hierarchy construction time. A final
disadvantage in relation to a SBRT is when a set of borehole logs is rendered.
Each time a new borehole is added or removed to the visualization, a new hi-
erarchy must be computed. In contrast, our approach performs these updates
in real time. It should be noted that the efficiency of traversing the resulting
hierarchy by rendering borehole logs could be O(n) if they are dispersed through
the volume.

In order to test the performance of a hierarchical structure with volumetric
terrains, we compared the results obtained for our SBRT approach (5-SSBO)
with the method proposed in [56], using the software provided by the authors,
known as Gigavoxels. The method is an out-of-core approach, ensuring the ren-
dering of datasets of billions of voxels. The system uses a memory layout based
on bricks and node pools that, for a typical usage case, has a constant memory
consumption on GPU of 459 MB; quite higher than the results obtained from
SBRT layouts. The last disadvantage compared to the straightforward SBRT
strategy is the preprocessing time required to compute the octree hierarchy. Al-
though presumably the system uses a GPU acceleration to carry out this task,
this process can take several minutes. In this specific case, as it is an out-of-core
strategy, this time is even greater since a series of files have to be created. These
results are summarized in Tables 4-7.

26



T
a
b

le
4
:

C
o
m

p
a
ri

so
n

o
f

re
su

lt
s

fo
r

D
a
ta

se
t

A
.

F
P

S
m

ea
n

s
fr

a
m

es
p

er
se

co
n

d
s

a
n

d
M

R
P

S
,

m
il
li
o
n

s
o
f

ra
y
s

p
er

se
co

n
d

A
p
p
ro

a
ch

F
P
S

(w
o
rs
t)

F
P
S

(b
e
st
)

M
R
P
S

(w
o
rs
t)

M
R
P
S

(b
e
st
)

P
re

p
ro

c
e
ss
in
g

ti
m
e
(s
)

G
P
U

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

M
a
in

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

S
B

R
T

13
7

12
59

1
2
7
.8

9
1
1
7
5
.2

8
0

1
.5

6
0
.0

0
G

ig
av

ox
el

s
15

8
56

0
1
4
7
.4

9
5
8
8
.7

6
1
1
5

4
5
9
.3

3
2
8
6
.8

6

T
a
b

le
5
:

C
o
m

p
a
ri

so
n

o
f

re
su

lt
s

fo
r

D
a
ta

se
t

B
.

F
P

S
m

ea
n

s
fr

a
m

es
p

er
se

co
n

d
s

a
n

d
M

R
P

S
,

m
il
li
o
n

s
o
f

ra
y
s

p
er

se
co

n
d

A
p
p
ro

a
ch

F
P
S

(w
o
rs
t)

F
P
S

(b
e
st
)

M
R
P
S

(w
o
rs
t)

M
R
P
S

(b
e
st
)

P
re

p
ro

c
e
ss
in
g

ti
m
e
(s
)

G
P
U

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

M
a
in

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

S
B

R
T

14
4

66
4

1
3
4
.4

2
6
1
9
.8

4
0

6
.1

9
0
.0

0
G

ig
av

ox
el

s
19

4
65

4
1
8
1
.1

0
6
1
0
.5

1
1
1
5

4
5
9
.3

3
2
8
6
.8

6

T
a
b

le
6
:

C
o
m

p
a
ri

so
n

o
f

re
su

lt
s

fo
r

D
a
ta

se
t

C
.

F
P

S
m

ea
n

s
fr

a
m

es
p

er
se

co
n

d
s

a
n

d
M

R
P

S
,

m
il
li
o
n

s
o
f

ra
y
s

p
er

se
co

n
d

A
p
p
ro

a
ch

F
P
S

(w
o
rs
t)

F
P
S

(b
e
st
)

M
R
P
S

(w
o
rs
t)

M
R
P
S

(b
e
st
)

P
re

p
ro

c
e
ss
in
g

ti
m
e
(s
)

G
P
U

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

M
a
in

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

S
B

R
T

50
12

08
4
6
.6

7
1
1
2
7
.6

8
0

2
9
.0

6
0
.0

0
G

ig
av

ox
el

s
24

1
69

0
2
2
4
.9

7
4

6
4
4
.1

2
9
2
0

4
5
9
.3

3
2
2
9
4
.8

6

T
a
b

le
7
:

C
o
m

p
a
ri

so
n

o
f

re
su

lt
s

fo
r

D
a
ta

se
t

D
.

F
P

S
m

ea
n

s
fr

a
m

es
p

er
se

co
n

d
s

a
n

d
M

R
P

S
,

m
il
li
o
n

s
o
f

ra
y
s

p
er

se
co

n
d

A
p
p
ro

a
ch

F
P
S

(w
o
rs
t)

F
P
S

(b
e
st
)

M
R
P
S

(w
o
rs
t)

M
R
P
S

(b
e
st
)

P
re

p
ro

c
e
ss
in
g

ti
m
e
(s
)

G
P
U

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

M
a
in

m
e
m
-

o
ry

u
sa

g
e

(M
B
)

S
B

R
T

27
26

5
2
5
.2

0
2
4
7
.3

8
0

2
9
.0

6
0
.0

0
G

ig
av

ox
el

s
24

46
2
2
.4

0
4
2
.9

4
9
2
0

4
5
9
.3

3
2
2
9
4
.8

6

27



Regarding the efficiency of rendering, for Datasets A, B and C Gigavoxels
reached a higher peak of MRPS in the worst case, being this gain slightly higher
for Datasets A and C. However, in all datasets, our structure performs better
than Gigavoxels when the ray hits quickly with non-empty data. As we stated
before, when a set of isolated stacks is visualized, as in the case of Dataset
D, an octree based solution is not efficient. If the boreholes are dispersed, the
ray advances linearly instead of logarithmically. For this dataset, our approach
achieves better results.

But of course octrees have a major advantage: they scale better than non-
hierarchical representations, i.e., as datasets size grows, the impact over the
performance will be lower. This is mainly due to their ability to compact empty
regions, accelerating empty space skipping, one of the bottlenecks of our system.
Also, rendering performance could be improved by including a level-of-detail
scheme, such as that provided by quadtrees and octrees structures. Additionally,
in some cases a hierarchical partition of the space could be beneficial for analysis
and simulation procedures. This could allow the execution of an operation on
a set of similar stacks within a region, thus improving the execution time. In
order to include such benefits in our system, a 2D space partitioning solution
with a stack as minimal element could be explored. Nevertheless, our framework
is capable of rendering volumetric terrains with a grid dimension higher than
3000 × 4000 at interactive frame rates.

6. Discussion and conclusion

We have presented a real-time visualization system for surface-subsurface
geological models. To accomplish this, we used a stack-based representation.
We have highlighted their low memory requirements in comparison with other
commonly used structures such as voxel grids or octrees, validating its use for
the management and visualization of geomodels. Also, we have tested several
approaches based on typical textures and the new SSBOs, to store this repre-
sentation on GPU reaching an outcome quite acceptable for interactive applica-
tions. It should also be pointed out that, as far as we know, the use of SSBOs to
store volumetric data has not been explored in the literature yet. Additionally,
our paper presents an accurate, simple and efficient method to calculate normal
surface vectors in image space. Finally, we have shown how several common
visual operations of interest in geoscientific applications can be implemented in
a straightforward way using the SBRT and the described visualization method.

Nevertheless, our rendering method can be improved in several ways. Al-
though we have demonstrated that our solution can compete with more sophis-
ticated data structures such as hierarchical grids with regard to performance, it
is possible to adapt this idea to our data structure. Another important aspect
is the visual quality. For instance, even though the method to compute the nor-
mal vectors for lighting could be adequate for geoscientific applications, it does
not provide very realistic shading. Since discrete data are visualized, filtering
methods can be applied by performing a low-pass filter in zones where mate-

28



rial changes. As stated before, in this work we opted for a simple visualization
pipeline, but any further method to improve the visual quality can be added.

A limitation of the approaches here described is that their support for editing
operations is limited. Operations such as deleting intervals or changing their
materials or sizes can be implemented in a trivial way; however, the addition of
new intervals in any part of the stack requires a special treatment in the data
structure. A straightforward solution would be to mark the affected intervals as
deleted, recreating them in a extra free space at the end of the GPU memory
reserved for the storage of the SBRT. After a certain number of these operations,
or if there is not free space, a complete reconstruction of the SBRT can be
performed. These update or reconstruction operations can be implemented in
the GPU in a easy and efficient way. In contrast, updating an hierarchical spatial
data structure would be much more difficult and computationally expensive.
The approaches 1-Textures and 5-SSBO are easily adaptable to incorporate this
mechanism; however, the rest of the approaches contain a data organization less
suitable for updating processes.

In addition, in this work we have focused solely on geological features, but
3D GIS applications also need the management of vector data aside from raster
data. Following this, we plan to extend the stack-based representation to handle
at the same time both data types. This hybrid representation would allow
consistent operations between data of different nature. Also, a framework for
the analysis and visualization of geomodels that operates entirely on the GPU
using GPGPU technologies such as CUDA or preferably OpenGL Compute
Shaders is planned. Finally, the stack-based representation and the rendering
method proposed can be implemented as a module for open-source GRASS GIS,
since this tool handles volumetric terrains and subsurface structures by means
of voxel models. Moreover, our rendering algorithm would improve one of the
main drawbacks of GRASS, i.e., its 3D visualization.

Acknowledgment

This work has been partially funded by the Ministerio De Economı́a y Com-
petitividad of Spain under the I+D+i research program TIN2014-58218-R, and
by the University of Jaén through the predoctoral research grant Acción 15.

References

[1] J. Mateo Lázaro, J. Á. Sánchez Navarro, A. Garćıa Gil, V. Edo Romero,
3D-geological structures with digital elevation models using GPU pro-
gramming, Computers & Geosciences 70 (2014) 138–146. doi:10.1016/

j.cageo.2014.05.014.

[2] J. Guo, L. Wu, W. Zhou, J. Jiang, C. Li, Towards Automatic and Topolog-
ically Consistent 3D Regional Geological Modeling from Boundaries and
Attitudes, ISPRS International Journal of Geo-Information 5 (2) (2016)
17. doi:10.3390/ijgi5020017.

29

http://dx.doi.org/10.1016/j.cageo.2014.05.014
http://dx.doi.org/10.1016/j.cageo.2014.05.014
http://dx.doi.org/10.3390/ijgi5020017


[3] J. Hughes, J. Foley, Computer Graphics: Principles and Practice, The
systems programming series, Addison-Wesley, 2014.
URL https://books.google.es/books?id=OVpsAQAAQBAJ

[4] J. J. Caban, S. Member, P. Rheingans, Texture-based Transfer Functions
for Direct Volume Rendering, IEEE transactions on Visualization and Com-
puter Graphics 14 (6) (2008) 1364–1371. doi:10.1109/TVCG.2008.169.

[5] A. Jjumba, S. Dragićević, Towards a voxel-based geographic automata for
the simulation of geospatial processes, ISPRS Journal of Photogramme-
try and Remote Sensing 117 (2015) 206–216. doi:10.1016/j.isprsjprs.
2016.01.017.

[6] J. Xue, G. Zhao, W. Xiao, Efficient GPU out-of-core visualization of large-
scale CAD models with voxel representations, Advances in Engineering
Software 99 (2016) 73–80. doi:10.1016/j.advengsoft.2016.05.006.

[7] H. Mitasova, R. S. Harmon, K. J. Weaver, N. J. Lyons, M. F. Overton, Sci-
entific visualization of landscapes and landforms, Geomorphology 137 (1)
(2012) 122–137. doi:10.1016/j.geomorph.2010.09.033.

[8] GRASS Development Team, Geographic Resources Analysis Support Sys-
tem (GRASS GIS) Software, Version 7.0, Open Source Geospatial Founda-
tion (2016).
URL http://grass.osgeo.org

[9] Pitney Bowes Inc., Mapinfo Engage3D, http://www.pitneybowes.

com/uk/location-intelligence/geographic-information-system/

mapinfo-engage3d.html (1996–2016).

[10] B. Benes, R. Forsbach, Layered data representation for visual simulation of
terrain erosion, in: Proceedings Spring Conference on Computer Graphics,
2001. doi:10.1109/SCCG.2001.945341.

[11] C. Tomlin, Geographic information systems and cartographic modeling,
Prentice Hall series in geographic information science, Prentice Hall, 1990.

[12] K. Arroyo Ohori, H. Ledoux, J. Stoter, An evaluation and classification
of n D topological data structures for the representation of objects in a
higher-dimensional GIS, International Journal of Geographical Information
Science 29 (5) (2015) 825–849. doi:10.1080/13658816.2014.999683.

[13] A. M. Lemon, N. L. Jones, Building solid models from boreholes and user-
defined cross-sections, Computers and Geosciences 29 (5) (2003) 547–555.
doi:10.1016/S0098-3004(03)00051-7.

[14] G. Caumon, P. Collon-Drouaillet, C. Le Carlier De Veslud, S. Viseur,
J. Sausse, Surface-based 3D modeling of geological structures, Mathemati-
cal Geosciences 41 (8) (2009) 927–945. doi:10.1007/s11004-009-9244-2.

30

https://books.google.es/books?id=OVpsAQAAQBAJ
https://books.google.es/books?id=OVpsAQAAQBAJ
http://dx.doi.org/10.1109/TVCG.2008.169
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.017
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.017
http://dx.doi.org/10.1016/j.advengsoft.2016.05.006
http://dx.doi.org/10.1016/j.geomorph.2010.09.033
http://grass.osgeo.org
http://grass.osgeo.org
http://grass.osgeo.org
http://www.pitneybowes.com/uk/location-intelligence/geographic-information-system/mapinfo-engage3d.html
http://www.pitneybowes.com/uk/location-intelligence/geographic-information-system/mapinfo-engage3d.html
http://www.pitneybowes.com/uk/location-intelligence/geographic-information-system/mapinfo-engage3d.html
http://dx.doi.org/10.1109/SCCG.2001.945341
http://dx.doi.org/10.1080/13658816.2014.999683
http://dx.doi.org/10.1016/S0098-3004(03)00051-7
http://dx.doi.org/10.1007/s11004-009-9244-2


[15] G. Caumon, G. G. Gray, C. Antoine, M.-O. Titeux, 3D implicit strati-
graphic model building from remote sensing data on tetrahedral meshes:
theory and application to a regional model of La Popa Basin, NE Mex-
ico, IEEE Transactions on Geoscience and Remote Sensing 51 (3) (2012)
1613–1621. doi:10.1109/TGRS.2012.2207727.

[16] A. C. de Oliveira Miranda, W. W. M. Lira, R. C. Marques, A. M. B.
Pereira, J. B. Cavalcante-Neto, L. F. Martha, Finite element mesh genera-
tion for subsurface simulation models, Engineering with Computers (2014)
1–20doi:10.1007/s00366-014-0352-3.

[17] F. Penninga, P. J. M. Van Oosterom, A simplicial complex-based
DBMS approach to 3D topographic data modelling, International
Journal of Geographical Information Science 22 (7) (2008) 751–779.
doi:10.1080/13658810701673535.
URL http://www.tandfonline.com/doi/abs/10.1080/

13658810701673535{#}.VegiRaDtlBc

[18] B. Crespin, R. Bézin, X. Skapin, O. Terraz, P. Meseure, Generalized maps
for erosion and sedimentation simulation, Computers & Graphics 45 (2014)
1–16. doi:10.1016/j.cag.2014.07.001.

[19] L. Wu, Topological relations embodied in a generalized tri-prism (GTP)
model for a 3D geoscience modeling system, Computers & Geosciences
30 (4) (2004) 405–418. doi:10.1016/j.cageo.2003.06.005.

[20] M. D. Jones, M. Farley, J. Butler, M. Beardall, Directable weathering of
concave rock using curvature estimation, IEEE Transactions on Visualiza-
tion and Computer Graphics 16 (1) (2010) 81–94. doi:10.1109/TVCG.

2009.39.

[21] F. Jørgensen, R. R. Møller, L. Nebel, N.-P. Jensen, A. V. Christiansen,
P. B. E. Sandersen, A method for cognitive 3D geological voxel modelling
of AEM data, Bulletin of Engineering Geology and the Environment 72 (3-
4) (2013) 421–432. doi:10.1007/s10064-013-0487-2.

[22] C. Watson, J. Richardson, B. Wood, C. Jackson, A. Hughes, Improving ge-
ological and process model integration through TIN to 3D grid conversion,
Computers & Geosciences 82 (2015) 45–54. doi:10.1016/j.cageo.2015.
05.010.

[23] S. Forstmann, J. Ohya, Visualization of large iso-surfaces based on nested
clip-boxes, in: ACM SIGGRAPH 2005 Posters, SIGGRAPH ’05, ACM,
New York, NY, USA, 2005. doi:10.1145/1186954.1187098.

[24] E. S. Lengyel, Voxel-Based Terrain for Real-Time Virtual Simulations,
Ph.D. thesis, University of California Davis (2010).

31

http://dx.doi.org/10.1109/TGRS.2012.2207727
http://dx.doi.org/10.1007/s00366-014-0352-3
http://www.tandfonline.com/doi/abs/10.1080/13658810701673535{#}.VegiRaDtlBc
http://www.tandfonline.com/doi/abs/10.1080/13658810701673535{#}.VegiRaDtlBc
http://dx.doi.org/10.1080/13658810701673535
http://www.tandfonline.com/doi/abs/10.1080/13658810701673535{#}.VegiRaDtlBc
http://www.tandfonline.com/doi/abs/10.1080/13658810701673535{#}.VegiRaDtlBc
http://dx.doi.org/10.1016/j.cag.2014.07.001
http://dx.doi.org/10.1016/j.cageo.2003.06.005
http://dx.doi.org/10.1109/TVCG.2009.39
http://dx.doi.org/10.1109/TVCG.2009.39
http://dx.doi.org/10.1007/s10064-013-0487-2
http://dx.doi.org/10.1016/j.cageo.2015.05.010
http://dx.doi.org/10.1016/j.cageo.2015.05.010
http://dx.doi.org/10.1145/1186954.1187098


[25] Ç. Koca, U. Güdükbay, A hybrid representation for modeling, interactive
editing, and real-time visualization of terrains with volumetric features,
International Journal of Geographical Information Science 28 (9) (2014)
1821–1847. doi:10.1080/13658816.2014.900560.

[26] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, K. Engel, Real-
time Volume Graphics, A. K. Peters, Ltd., 2006.

[27] D. Patel, Ø. Sture, H. Hauser, C. Giertsen, M. Eduard Gröller, Knowledge-
assisted visualization of seismic data, Computers and Graphics (Pergamon)
33 (5) (2009) 585–596. doi:10.1016/j.cag.2009.06.005.

[28] Natali, T. G. Klausen, D. Patel, Sketch-based modelling and visualization
of geological deposition, Computers and Geosciences 67 (2014) 40–48. doi:
10.1016/j.cageo.2014.02.010.

[29] L. Wang, Y. Yu, K. Zhou, B. Guo, Multiscale vector volumes, ACM Trans-
actions on Graphics 30 (6) (2011) 1. doi:10.1145/2070781.2024201.

[30] K. Takayama, O. Sorkine, A. Nealen, T. Igarashi, Volumetric modeling
with diffusion surfaces, ACM Transactions on Graphics 29 (6) (2010) 1.
doi:10.1145/1882261.1866202.

[31] M. Scholz, J. Bender, C. Dachsbacher, Real-time isosurface extraction with
view-dependent level of detail and applications, Computer Graphics Forum
34 (1) (2015) 103–115. doi:10.1111/cgf.12462.

[32] S. Mantler, S. Jeschke, Interactive landscape visualization using GPU
ray casting, Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast Asia -
GRAPHITE ’06 (2006) 117doi:10.1145/1174429.1174448.

[33] L. Ammann, O. Génevaux, J.-M. Dischler, Hybrid rendering of dynamic
heightfields using ray-casting and mesh rasterization, in: Proceedings of
Graphics Interface 2010, GI ’10, Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, 2010, pp. 161–168.

[34] M. Treib, F. Reichl, S. Auer, R. Westermann, Interactive editing of Gi-
gaSample terrain fields, Computer Graphics Forum 31 (2) (2012) 383–392.
doi:10.1111/j.1467-8659.2012.03017.x.

[35] M. Natali, E. Lidal, J. Parulek, Modeling terrains and subsurface geology,
in: Eurographics 2013-State of the Art Reports, 2012, pp. 155–173. doi:

10.2312/conf/EG2013/stars/155-173.

[36] A. Peytavie, E. Galin, J. Grosjean, S. Merillou, Arches: A framework for
modeling complex terrains, Computer Graphics Forum 28 (2) (2009) 457–
467. doi:10.1111/j.1467-8659.2009.01385.x.

32

http://dx.doi.org/10.1080/13658816.2014.900560
http://dx.doi.org/10.1016/j.cag.2009.06.005
http://dx.doi.org/10.1016/j.cageo.2014.02.010
http://dx.doi.org/10.1016/j.cageo.2014.02.010
http://dx.doi.org/10.1145/2070781.2024201
http://dx.doi.org/10.1145/1882261.1866202
http://dx.doi.org/10.1111/cgf.12462
http://dx.doi.org/10.1145/1174429.1174448
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.2312/conf/EG2013/stars/155-173
http://dx.doi.org/10.2312/conf/EG2013/stars/155-173
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x


[37] F. Löffler, A. Müller, H. Schumann, Real-time Rendering of Stack-based
Terrains, in: P. Eisert, J. Hornegger, K. Polthier (Eds.), Vision, Modeling,
and Visualization (2011), The Eurographics Association, 2011. doi:10.

2312/PE/VMV/VMV11/161-168.

[38] A. K. Turner, Challenges and trends for geological modelling and visuali-
sation, Bulletin of Engineering Geology and the Environment 65 (2) (2006)
109–127. doi:10.1007/s10064-005-0015-0.

[39] J. L. Gunnink, D. Maljers, S. F. Van Gessel, A. Menkovic, H. J. Hum-
melman, Digital Geological Model (DGM): A 3D raster model of the sub-
surface of the Netherlands, Geologie en Mijnbouw/Netherlands Journal of
Geosciences 92 (1) (2013) 33–46. doi:10.1017/S0016774600000263.

[40] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d surface
construction algorithm, in: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’87, ACM,
New York, NY, USA, 1987, pp. 163–169. doi:10.1145/37401.37422.

[41] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, M. Gross, Real-time ray-
casting and advanced shading of discrete isosurfaces, Computer Graphics
Forum 24 (3) (2005) 303–312. doi:10.1111/j.1467-8659.2005.00855.x.

[42] A. Knoll, S. Thelen, I. Wald, C. D. Hansen, H. Hagen, M. E. Papka, Full-
resolution interactive cpu volume rendering with coherent bvh traversal,
in: 2011 IEEE Pacific Visualization Symposium, 2011, pp. 3–10. doi:

10.1109/PACIFICVIS.2011.5742355.

[43] R. Yagel, D. Cohen, A. Kaufman, Normal estimation in 3 D discrete space,
The Visual Computer 8 (5-6) (1992) 278–291. doi:10.1007/BF01897115.

[44] A. Kadosh, D. Cohen-Or, R. Yagel, Tricubic Interpolation of Discrete Sur-
faces for Binary Volumes, IEEE Transactions on Visualization and Com-
puter Graphics 9 (4) (2003) 580–586. doi:10.1109/TVCG.2003.1260750.

[45] C. Sigg, T. Weyrich, M. Botsch, M. Gross, GPU-Based Ray-Casting
of Quadratic Surfaces, Symposium on Point-Based Graphics (2006) 59–
65doi:10.2312/SPBG/SPBG06/059-065.

[46] J. Baert, A. Lagae, P. Dutré, Out-of-Core Construction of Sparse Voxel
Octrees, Computer Graphics Forumdoi:10.1111/cgf.12345.

[47] B. Dado, T. R. Kol, P. Bauszat, J. M. Thiery, E. Eisemann, Geometry and
attribute compression for voxel scenes, Computer Graphics Forum 35 (2)
(2016) 397–407. doi:10.1111/cgf.12841.

[48] T. Akenine-Möller, E. Haines, N. Hoffman, Real-time rendering, A. K.
Peters, Ltd., 2009.

33

http://dx.doi.org/10.2312/PE/VMV/VMV11/161-168
http://dx.doi.org/10.2312/PE/VMV/VMV11/161-168
http://dx.doi.org/10.1007/s10064-005-0015-0
http://dx.doi.org/10.1017/ S0016774600000263
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1111/j.1467-8659.2005.00855.x
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742355
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742355
http://dx.doi.org/10.1007/BF01897115
http://dx.doi.org/10.1109/TVCG.2003.1260750
http://dx.doi.org/10.2312/SPBG/SPBG06/059-065
http://dx.doi.org/10.1111/cgf.12345
http://dx.doi.org/10.1111/cgf.12841


[49] J. Wang, F. Yang, Y. Cao, Cache-aware sampling strategies for texture-
based ray casting on gpu, in: Large Data Analysis and Visualization
(LDAV), 2014 IEEE 4th Symposium on, 2014, pp. 19–26. doi:10.1109/

LDAV.2014.7013200.

[50] D. Jönsson, P. Ganestam, A. Ynnerman, M. Doggett, T. Ropinski, Explicit
Cache Management for Volume Ray-Casting on Parallel Architectures, in:
EG Symposium on Parallel Graphics and Visualization (EGPGV), Euro-
graphics, 2012, pp. 31–40.

[51] S. P. Dunstan, A. J. B. Mill, Spatial indexing of geological models using
linear octrees, Computers and Geosciences 15 (8) (1989) 1291–1301. doi:

10.1016/0098-3004(89)90093-9.

[52] K. Weiss, L. De Floriani, R. Fellegara, M. Velloso, The PR-star octree: a
spatio-topological data structure for tetrahedral meshes, in: Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems - GIS ’11, ACM Press, New York, New
York, USA, 2011, p. 92. doi:10.1145/2093973.2093987.

[53] G. Jansen, R. Sohrabi, S. A. Miller, HULK – Simple and fast gener-
ation of structured hexahedral meshes for improved subsurface simula-
tions, Computers & Geosciences 99 (July 2016) (2017) 159–170. doi:

10.1016/j.cageo.2016.11.011.

[54] B. Liu, G. J. Clapworthy, F. Dong, IsoBAS: A binary accelerating structure
for fast isosurface rendering on GPUs, Computers and Graphics (Perga-
mon) 48 (2015) 60–70. doi:10.1016/j.cag.2015.02.002.

[55] M. Labsch, M. Hadwiger, P. Rautek, S. Bruckner, M. E. Gr, JiTTree : A
Just-in-Time Compiled Sparse GPU Volume Data Structure, IEEE Trans-
actions on Visualization and Computer Graphics 22 (1) (2016) 1025–1034.
doi:10.1109/TVCG.2015.2467331.

[56] C. Crassin, F. Neyret, S. Lefebvre, E. Eisemann, I. Sophia-antipolis, Gi-
gaVoxels : Ray-Guided Streaming for Efficient and Detailed Voxel Render-
ing, ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
1 (212) (2009) 15–22. doi:10.1145/1507149.1507152.

[57] O. Št’Ava, B. Beneš, M. Brisbin, J. Křivánek, Interactive terrain modeling
using hydraulic erosion, EuroGraphics Symposium on Computer Animation
(2008) 201–210doi:10.2312/SCA/SCA08/201-210.

[58] T. Harada, Sliced grid: A memory and computationally efficient data
structure for particle-based simulation on the gpu, in: W. Engel (Ed.),
ShaderX7: Advanced Rendering Techniques, Charles River Media, 2009,
pp. 685–698.

34

http://dx.doi.org/10.1109/LDAV.2014.7013200
http://dx.doi.org/10.1109/LDAV.2014.7013200
http://dx.doi.org/10.1016/0098-3004(89)90093-9
http://dx.doi.org/10.1016/0098-3004(89)90093-9
http://dx.doi.org/10.1145/2093973.2093987
http://dx.doi.org/10.1016/j.cageo.2016.11.011
http://dx.doi.org/10.1016/j.cageo.2016.11.011
http://dx.doi.org/10.1016/j.cag.2015.02.002
http://dx.doi.org/10.1109/TVCG.2015.2467331
http://dx.doi.org/10.1145/1507149.1507152
http://dx.doi.org/10.2312/SCA/SCA08/201-210

	Introduction
	Related work
	Stack-based terrain representation
	Rendering method
	GPU-based raycasting
	Geometry setup
	Data access
	Compositing
	Advance ray position
	Ray termination

	Texture management
	Visual operations
	Strata visualization
	Cross section visualization
	Borehole log visualization
	Applying textures to terrain


	Performance analysis
	Comparison of memory layouts
	Comparison with hierarchical data structures

	Discussion and conclusion

